Predictions in Quantile Regressions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantile Uncorrelation and Instrumental Regressions

We introduce a notion of median uncorrelation that is a natural extension of mean (linear) uncorrelation. A scalar random variable Y is median uncorrelated with a k-dimensional random vector X if and only if the slope from an LAD regression of Y on X is zero. Using this simple definition, we characterize properties of median uncorrelated random variables, and introduce a notion of multivariate ...

متن کامل

Functional Data Analysis of Generalized Quantile Regressions

[To be revised.] Quantile and expectile regression are tail oriented conditional regression. They can be transformed as generalized quantile regression. Traditional generalized quantile regression focuses on a single curve. When more random curves are available, we can estimate the single curves jointly by using the information from all subjects instead of estimate it individually. To avoid too...

متن کامل

Improving the computation of censored quantile regressions

Censored quantile regressions (CQR) are a valuable tool in economics and engineering. The computation of estimators is highly complex and the performance of standard methods is not satisfactory, in particular if a high degree of censoring is present. Due to an interpolation property the computation of CQR estimates corresponds to the solution of a large scale discrete optimization problem. This...

متن کامل

Jackknife Model Averaging for Quantile Regressions

In this paper we consider the problem of frequentist model averaging for quantile regression (QR) when all the  models under investigation are potentially misspecified and the number of parameters in some or all models is diverging with the sample size  To allow for the dependence between the error terms and the regressors in the QR models, we propose a jackknife model averaging (JMA) estima...

متن کامل

Efficient Regressions via Optimally Combining Quantile Information.

We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Statistics

سال: 2014

ISSN: 2161-718X,2161-7198

DOI: 10.4236/ojs.2014.47048